Stat 201: Introduction to Statistics

Standard 16: Probability - Medical Testing Terminology

Example 2: Probability

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free $\left(D^{c}\right)$	1307	3921	5228
Total	1355	3927	5282

- Let Event...
- D = Has Disease
$-D^{c}=$ Disease Free
- Pos = Positive Test
- Neg $=$ Negative Test

Example 2: Probability

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	$\mathbf{4 8}$	6	54
Disease Free (D${ }^{c}$)	1307	3921	5228
Total	1355	3927	5282

- A true positive is when a participant tests positive for the disease and does have it
- Here there are 48 true positives

Example 2: Probability

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free $\left(D^{c}\right)$	1307	$\mathbf{3 9 2 1}$	5228
Total	1355	3927	5282

- A true negative is when a participant tests negative for the disease and doesn't have it
- Here there are 3,921 true negatives

Example 2: Probability

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ${ }^{\text {c }}$)	$\mathbf{1 3 0 7}$	3921	5228
Total	1355	3927	5282

- A false positive is when a participant tests positive for the disease but doesn't have it
- Here there are 1,307 false positives

Example 2: Probability

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	$\mathbf{6}$	54
Disease Free $\left(D^{c}\right)$	1307	3921	5228
Total	1355	3927	5282

- A false negative is when a participant tests negative for the disease but does have it
- Here there are 6 false negatives

Example 2: Probability

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ${ }^{c}$)	1307	3921	5228
Total	$\mathbf{1 3 5 5}$	3927	$\mathbf{5 2 8 2}$

- The probability a randomly selected participant had a positive test

$$
\begin{aligned}
& \mathrm{P}(\text { Pos })=\frac{\text { Number of positive observations }}{\text { Total number of observations }} \\
& =\frac{1355}{5282}=.25653162
\end{aligned}
$$

Example 2: Probability

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	$\mathbf{5 4}$
Disease Free (D ${ }^{c}$)	1307	3921	5228
Total	1355	3927	$\mathbf{5 2 8 2}$

- The probability a randomly selected participant had Disease:

$$
\begin{aligned}
P(D) & =\frac{\text { Number of D observations }}{\text { Total number of observations }} \\
& =\frac{54}{5282}=.0102234
\end{aligned}
$$

Example 2: Probability

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	$\mathbf{4 8}$	6	54
Disease Free (D${ }^{\text {c }}$)	1307	3921	5228
Total	1355	3927	$\mathbf{5 2 8 2}$

- The probability a randomly selected participant had Disease given they tested positive

$$
\begin{gathered}
P(D \mid \text { Pos })=\frac{P(D \& P o s)}{P(\text { Pos })}=\frac{\left(\frac{48}{5282}\right)}{.25653162} \\
=.03542435
\end{gathered}
$$

Example 2: Probability

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	$\mathbf{4 8}$	6	54
Disease Free (D ${ }^{\text {c }}$)	1307	3921	5228
Total	$\mathbf{1 3 5 5}$	3927	5282

- As before we can rewrite this as:

$$
\begin{aligned}
& P(D \mid \text { Pos })=\frac{\text { Number of D\&Pos Observations }}{\text { Number of Pos Observations }} \\
& \quad=\frac{48}{1355}=.03542435
\end{aligned}
$$

Example 2: Probability

- $P(D \mid P o s)=.03542435$
- $P(D)=.0102234$
- Because $P(D \mid P o s) \neq P(D)$ events D and POS are not independent events

Adjectives for Tests

- Sensitivity - Probability that a test detects a substance correctly by giving a positive test result
- Sensitivity $=P($ Pos \mid Substance $)$
- Specificity - Probability that a test correctly does not detect a substance by giving a negative result
- Specificity $=P\left(\right.$ Neg \mid Substance $\left.{ }^{c}\right)$

Example 3: Adjectives for Tests

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	$\mathbf{4 8}$	6	$\mathbf{5 4}$
Disease Free (D ${ }^{\text {c }}$)	1307	3921	5228
Total	1355	3927	$\mathbf{5 2 8 2}$

- Sensitivity $=P(\operatorname{Pos} \mid D)=\frac{P(P o s \& D)}{P(D)}=$ $\frac{\left(\frac{48}{5282}\right)}{\left(\frac{54}{5282}\right)}=\frac{48}{54}=.8889$

Example 3: Adjectives for Tests

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	$\mathbf{4 8}$	6	$\mathbf{5 4}$
Disease Free (D ${ }^{\text {c }}$)	1307	3921	5228
Total	1355	3927	5282

- As before we can rewrite this as:

$$
\begin{aligned}
& \text { Sensitivity }=\frac{\text { number of Pos\&D observations }}{\text { number of } D \text { observations }}= \\
& \frac{48}{54}=.8889
\end{aligned}
$$

Example 3: Adjectives for Tests

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ${ }^{c}$)	1307	3921	5228
Total	1355	3927	5282

- Specificity $=P\left(N e g \mid D^{c}\right)=\frac{P\left(N e g \& D^{c}\right)}{P\left(D^{c}\right)}=$ $\frac{\left(\frac{3921}{5282}\right)}{\left(\frac{5228}{5282}\right)}=\frac{3921}{5228}=.75$

Example 3: Adjectives for Tests

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free $\left(D^{c}\right)$	1307	3921	5228
Total	1355	3927	5282

- As before we can rewrite this as:

$$
\text { Specificity }=\frac{\text { number of } N e g \& D^{c} \text { observations }}{\text { number of } D^{c} \text { observations }}
$$

$$
=\frac{3921}{5228}=.75
$$

Example 4: Tree Diagrams

- For a Western blot blood test the sensitivity is about .999 and the specificity is about .9999
- Sensitivity $=P($ Pos \mid HIV $)=.999$
- Specificity $=P\left(N e g \mid H I V^{c}\right)=.999$
- Consider a high risk group here 10% are truly HIV positive
$-\mathrm{P}(\mathrm{HIV})=.1$

Example 4: Tree Diagrams

Example 4: Tree Diagrams

- Using Complement Rule we can find:
- $P($ Neg \mid HIV $)=P\left(\right.$ Pos $\left.^{c} \mid H I V\right)=$

$$
1-P(\text { Pos } \mid \text { HIV })=1-.999=.001
$$

- $P\left(\right.$ Pos $\left.\mid \mathrm{HIV}^{c}\right)=P\left(\mathrm{Neg}^{c} \mid \mathrm{HIV}^{c}\right)$

$$
=1-P\left(N e g \mid H I V^{c}\right)=1-.9999=.0001
$$

- $P\left(H I V^{c}\right)=1-P(H I V)=1-.1=.9$

Example 4: Tree Diagrams

Example 4: Tree Diagrams

- Note, using the complement rule helped us find the rest of the probabilities
- The branches leaving any point should have probabilities that add to one

Example 4: Tree Diagrams

- The probability that a randomly selected participant tests positive and has HIV:

$$
\begin{aligned}
& P(H I V \cap P o s) \\
& \quad=P(H I V) * P(P o s \mid H I V) \\
& \quad=.1 * .999=.0999
\end{aligned}
$$

Example 4: Tree Diagrams

- The probability that a randomly selected participant tests negative and has HIV:

$$
\begin{aligned}
& P(H I V \bigcap N e g) \\
& \quad=P(H I V) \\
& \quad * P(N e g \mid H I V) \\
& \quad=.1 * .001 \\
& \quad=.0001
\end{aligned}
$$

Example 4: Tree Diagrams

- The probability that a randomly selected participant tests positive and doesn't have HIV:

$$
\begin{gathered}
P\left(H I V^{c} \bigcap \text { Pos }\right) \\
=P\left(H I V^{\mathrm{c}}\right) \\
\quad * \mathrm{P}\left(\mathrm{Pos} \mid \mathrm{HIV}{ }^{\mathrm{c}}\right) \\
\quad=.9 * .0001 \\
\quad=.00009
\end{gathered}
$$

Example 4: Tree Diagrams

- The probability that a randomly selected participant tests negative and doesn't have HIV:

$$
\begin{gathered}
P\left(H I V^{c} \bigcap N e g\right) \\
=P\left(H I V^{c}\right) \\
* P\left(\mathrm{Neg} \mid \mathrm{HIV}^{\mathrm{c}}\right) \\
=.9 * .9999 \\
=.89991
\end{gathered}
$$

Example 4: True Positive

- The probability a randomly selected person has HIV given they tested positive
- $P(H I V \mid P o s)=\frac{P(H I V \cap P o s)}{P(P o s)}=$

$$
\begin{aligned}
& \frac{P(H I V \cap \text { Pos })}{P(\text { Pos } \mid \text { HIV }} \begin{array}{l}
\mathrm{C}) P\left(H I V^{\mathrm{c}}\right)+P(\text { Pos } \mid \mathrm{HIV}) P(H I V)
\end{array} \\
& \frac{.0999}{.0001 * .9+.999 * .1}=.999
\end{aligned}
$$

- Since this is very close to one, if you test positive, it is very likely that you have HIV

Example 4: True Positive

- The probability a randomly selected person has HIV given they tested positive
- $P(H I V \mid \mathrm{Neg})=\frac{P(\mathrm{HIV} \cap \mathrm{Neg})}{P(\text { Neg })}=\frac{.0001}{.9}=.0001$
- Since this is very close to zero, if you test negative, it is very unlikely that you have HIV

