Stat 201: Introduction to Statistics

Standard 16: Probability – Medical Testing Terminology

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ^c)	1307	3921	5228
Total	1355	3927	5282

- Let Event...
 - D = Has Disease
 - $-D^{c}$ = Disease Free
 - Pos = Positive Test
 - Neg = Negative Test

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (<i>D^c</i>)	1307	3921	5228
Total	1355	3927	5282

- A **true positive** is when a participant tests positive for the disease and does have it
- Here there are 48 true positives

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ^c)	1307	3921	5228
Total	1355	3927	5282

- A true negative is when a participant tests negative for the disease and doesn't have it
- Here there are 3,921 true negatives

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ^c)	1307	3921	5228
Total	1355	3927	5282

- A **false positive** is when a participant tests positive for the disease but doesn't have it
- Here there are 1,307 false positives

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (<i>D^c</i>)	1307	3921	5228
Total	1355	3927	5282

- A **false negative** is when a participant tests negative for the disease but does have it
- Here there are 6 false negatives

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ^c)	1307	3921	5228
Total	1355	3927	5282

• The probability a randomly selected participant had a positive test $P(Pos) = \frac{Number \ of \ positive \ observations}{Total \ number \ of \ observations}$ $= \frac{1355}{5282} = .25653162$

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ^c)	1307	3921	5228
Total	1355	3927	5282

• The probability a randomly selected participant had Disease: $P(D) = \frac{Number \ of \ D \ observations}{Total \ number \ of \ observations}$ $= \frac{54}{5282} = .0102234$

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ^c)	1307	3921	5228
Total	1355	3927	5282

 The probability a randomly selected participant had Disease given they tested positive

$$P(D|Pos) = \frac{P(D\&Pos)}{P(Pos)} = \frac{\left(\frac{40}{5282}\right)}{.25653162}$$
$$= .03542435$$

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ^c)	1307	3921	5228
Total	1355	3927	5282

• As before we can rewrite this as:

$$P(D|Pos) = \frac{Number \ of \ D\&Pos \ Observations}{Number \ of \ Pos \ Observations}$$
$$= \frac{48}{1355} = .03542435$$

- P(D|Pos) = .03542435
- P(D) = .0102234
- Because P(D|Pos) ≠ P(D) events D and POS are not independent events

Adjectives for Tests

 Sensitivity – Probability that a test detects a substance correctly by giving a positive test result

-Sensitivity = P(Pos|Substance)

 Specificity – Probability that a test correctly does not detect a substance by giving a negative result

$$-Specificity = P(Neg|Substance^{c})$$

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ^c)	1307	3921	5228
Total	1355	3927	5282

• Sensitivity =
$$P(Pos|D) = \frac{P(Pos \& D)}{P(D)} =$$

$$\frac{\left(\frac{48}{5282}\right)}{\left(\frac{54}{5282}\right)} = \frac{48}{54} = .8889$$

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ^c)	1307	3921	5228
Total	1355	3927	5282

• As before we can rewrite this as:

 $Sensitivity = \frac{number \ of \ Pos\&D \ observations}{number \ of \ D \ observations} = \frac{48}{54} = .8889$

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ^c)	1307	3921	5228
Total	1355	3927	5282

• Specificity =
$$P(Neg|D^c) = \frac{P(Neg \& D^c)}{P(D^c)} =$$

$$\frac{\left(\frac{3921}{5282}\right)}{\left(\frac{5228}{5282}\right)} = \frac{3921}{5228} = .75$$

	Positive Test (Pos)	Negative Test (Neg)	Total
Has Disease (D)	48	6	54
Disease Free (D ^c)	1307	3921	5228
Total	1355	3927	5282

• As before we can rewrite this as: $Specificity = \frac{number \ of \ Neg\&D^c \ observations}{number \ of \ D^c \ observations}$ $= \frac{3921}{5228} = .75$

• For a Western blot blood test the sensitivity is about .999 and the specificity is about .9999

-Sensitivity = P(Pos|HIV) = .999

$$-Specificity = P(Neg|HIV^{c}) = .999$$

 Consider a high risk group here 10% are truly HIV positive

- P(HIV)=.1

- Using Complement Rule we can find:
 - $P(Neg|HIV) = P(Pos^{c}|HIV) =$ 1 - P(Pos|HIV) = 1 - .999 = .001
 - $P(Pos|HIV^c) = P(Neg^c|HIV^c)$ = $1 - P(Neg|HIV^c) = 1 - .9999 = .0001$
 - $P(HIV^{c}) = 1 P(HIV) = 1 .1 = .9$

- Note, using the complement rule helped us find the rest of the probabilities
- The branches leaving any point should have probabilities that add to one

The probability that a randomly selected participant tests positive and has HIV:

$$P\left(HIV\bigcap Pos\right)$$

= $P(HIV) * P(Pos|HIV)$
= $.1 * .999 = .0999$

The probability that a randomly selected participant tests negative and has HIV:

$$P\left(HIV\bigcap Neg\right)$$

= $P(HIV)$
* $P(Neg|HIV)$
= .1 * .001
= .0001

The probability that a randomly selected participant tests positive and doesn't have HIV:

$$P\left(HIV^{c}\bigcap Pos\right)$$

= $P(HIV^{c})$
* $P(Pos|HIV^{c})$
= .9 * .0001
= .00009

The probability that a randomly selected participant tests negative and doesn't have HIV:

$$P\left(HIV^{c}\bigcap Neg\right)$$
$$= P(HIV^{c})$$
$$* P(Neg|HIV^{c})$$
$$= .9 * .9999$$
$$= .89991$$

Example 4: True Positive

 The probability a randomly selected person has HIV given they tested positive

•
$$P(HIV|Pos) = \frac{P(HIV \cap Pos)}{P(Pos)} =$$

 $\frac{P(HIV \cap Pos)}{P(Pos|HIV^{c})P(HIV^{c}) + P(Pos|HIV)P(HIV)} =$
 $\frac{.0999}{.0001*.9+.999*.1} = .999$

• Since this is very close to one, if you test positive, it is very likely that you have HIV

Example 4: True Positive

 The probability a randomly selected person has HIV given they tested positive

•
$$P(HIV|Neg) = \frac{P(HIV \cap Neg)}{P(Neg)} = \frac{.0001}{.9} = .0001$$

 Since this is very close to zero, if you test negative, it is very unlikely that you have HIV